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MOTIVATION

What is a Quantum De vice?
Quantum scale: “particles” act like waves.

Quantum device: operation is based on quantum wave behavior of
electrons.

Simple Quantum De vices
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MOTIVATION

Future of Electr onic De vice Scaling
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MOTIVATION

Quantum Eff ects in Con ventional De vices
Quantum effects are an increasing “nuisance” in shrinking conventional
electronic devices.

MOSFET

p-Si

e-
Ec

Energy Quantization

n

n
E

B

C

electr ons

Bipolar T ransistor

Depletion La yer Tunneling

DRAM Capacitor

Oxide Si

M
et

al
/P

ol
yS

i

+
+

+ +

--
-

-

Oxide Tunneling

NASA Ames Research Center MRJ Technology Solutions

MOTIVATION

Quantum Eff ects in MOSFET
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MOTIVATION

Hybrid Con ventional-Quantum De vices
New heterojunction devices use quantum effects.

Quantum W ell Laser Diode
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MOTIVATION

Quantum Electr onic De vices
True quantum devices promise much further down-scaling.
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MOTIVATION

Why Investigate Quantum De vices? (4)
Quantum computers may solve otherwise “impossible” problems:

• Quantum decryption

• Provably secure communication

• Real-time simulation of quantum systems

Ultimate Quantum Systems

Possib le Quantum De vice:
Hydr og en Atom

photon

"0" to "1"

"1" to "0"

Possib le Quantum Computer:
Quantum Dot Arra y
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APPROACH
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APPROACH

Goals of Quantum De vice Sim ulation

Strengths of simulation:

• More detail than theory

• Internal view of device operation

• Modify device and test conditions at will

• Vastly less expensive than experiment

Theor y

Simulation Experiment
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APPROACH

Form ulations of Quantum Mec hanics

Approaches in SQUADS (to efficiently simulate real quantum systems):

• Wigner function method

• Transfer-matrix method

Heisenber g Matrix Mec hanics Schröding er Equation

Transf er-Matrix

Scattering-Matrix

Lang evin Equation

Quantum T ranspor t Equations

Green’ s Functions Density Matrix

Wigner Function Path Integral
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APPROACH

Guiding Principles f or SQUADS
(Stanf ord QUAntum De vice Sim ulator)

• General (any 1-D structure and material system)

• Comprehensive test suite (steady-state, transient, small-signal)

• Designed for investigation of quantum device simulation:

• Structural modularity

• Comparison of efficiency, accuracy, and robustness

• Computationally efficient (CPU and memory)

• Automated (minimal user effort)
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TRANSFER-MATRIX

Over view of Transf er-Matrix Method (TMM)
Premise: Determine current flow from transmission T of a beam of
particles through device.

Calculate T from time-independent Schrödinger equation:

(Kinetic + P otential = T otal Ener gy)

But Schrödinger equation can’t
be solved analytically for U(x)
in useful quantum devices.
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TRANSFER-MATRIX

Solving the Sc hröding er Equation
TMM Approach: Divide device into many short regions.
Approximate U(x) as “solvable” function in each region.

But now there are two unknowns for each region!

Wavefunction matching conditions give enough constraints:
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TRANSFER-MATRIX

TMM Simulation Pr ocedures and Results
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TRANSFER-MATRIX

TMM Simulation: Be yond the Basics
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WIGNER FUNCTION
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WIGNER FUNCTION

Wigner Function Method (WFM)
Analogous to the Boltzmann transport equation (BTE) formulation of
classical physics:

Wigner Function transport equation (WFTE) in 1-D:

State functions like fc and fw are natural, efficient, and intuitive.
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RTD Wigner Function at High Bias

WIGNER FUNCTION
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WIGNER FUNCTION

Wigner Function Grid ding Sc heme
For numerical solution of WFTE, approximate Wigner function as array
of values at discrete (x,k) pairs.
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WIGNER FUNCTION

WFTE Discretization
Write each term in WFTE in terms of the discrete WF values

Examples: First-order transient term and first-order upwind difference
diffusion term:
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WIGNER FUNCTION

WFTE Discretization Options
Alternate discretization schemes implemented in SQUADS:

• Transient term: 1st and 2nd order forward and backward Euler,
Cayley.

• Diffusion term: 1st, 2nd, and 3rd order upwind; 2nd, 4th, and 6th
order central; any hybrid combination; simple m*(x) model.

• Drift term integration methods: Standard, rectangular-smoothed,
triangular-smoothed.

• Scattering term: Relaxation-time approximation.

Trade-off: efficienc y ver sus accurac y
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WIGNER FUNCTION

Gaussian W ave Packet: 20 fs Sim ulation
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WIGNER FUNCTION

WFTE Discretization Conc lusions
Transient term:

• FE1, FE2, BE2 can diverge

• Cayley more accurate than BE1

Diffusion term:

• High order forms (UDS3, CDS6) unnecessary

• Hybrid difference schemes (e.g., UDS2/CDS2) optimal

• Changing difference scheme at boundary (HDS, CDS) acceptable

• Simple m*(x) model: high error

Drift term: Alternative forms add little error.
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SELF-CONSISTENCY

What is Self-Consistenc y?
Self-Consistency: Carrier density profile c(x) is consistent with the
energy band profile U(x), as dictated by the Poisson equation (PE)

WFTE-PE system is a non-linear pair of equations:

• PE:

• WFTE:
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SELF-CONSISTENCY

Poisson Equation in SQ UADS
Self-consistent solution of WFTE-PE system requires iteration.

Differential form of PE used in SQUADS: includes feedback term.

Expressions f or dc/dU f eedbac k term:

Classical M-B:

Classical F-D:

Quantum: Full Newton form (described for first time)
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SELF-CONSISTENCY

Self-Consistenc y Iteration Appr oaches
SQUADS implements two general approaches for N-L system iteration:

• Gummel (plug-in): Solve equations consecutively with approximate
feedback term. Low computational cost.

• Newton: Solve single system of all equations with exact feedback.
Fewer iterations, but high cost per iteration.

Two solution modes for each:

• Steady-state: Find self-consistent solution ASAP. Intermediate
solutions are meaningless.

• Transient: Each S-C iteration is also a time step. Intermediate
solutions follow evolution of device.
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SELF-CONSISTENCY

Full-Ne wton WFTE-PE Matrix Equation
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SELF-CONSISTENCY

Test Device Expected Results

JB simulations first to reproduce experimental RTD behavior in NDR
region: I-V plateau, hysteresis, bistability, and unstable oscillations.

Experimental R TD I-V Cur ve WFM Simulated R TD I-V Cur ve
(Brown et al., APL 55, 1777) (Jensen and Buot, PRL 66, 1078)
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SELF-CONSISTENCY

Steady-State Self-Consistenc y Results

Conc lusion: Plateau is not a purel y transient eff ect, as in e xperiment!
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SELF-CONSISTENCY

Transient Self-Consistenc y Results

RTD is unstab le in NDR por tion of plateau.
Steady-state sim ulations ga ve no c lue!
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SELF-CONSISTENCY

Self-Consistenc y Conc lusions
Performance Results

• Both steady-state and transient iterations required for max utility.

• Steady-state for efficient, wide-ranging investigations.

• Transient for ultimate accuracy and transient situations.

• SS Gummel with F-D feedback improves CPU time by factor of 3.

• Newton method not worth computational price (2xRAM, 1.5xCPU).

• SS Gummel with M-B feedback needed where convergence difficult.

Self-Consistenc y Iteration Method CPU Hour s

Steady-State Gummel (M-B) 14.3

Steady-State Gummel (F-D) 5.0

Steady-State Ne wton 7.2

Transient Gummel 330

Transient Ne wton ~1,650
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SLEW RATE

Conventional Bias Sle wing Appr oach
Applied bias slew rate: rate of change of applied bias with time.

Standard quantum simulation approach: “instantaneous” bias changes

For typical quantum device simulation, time step is 1 fs (1e-15 s)!

Problem: resulting slew rate for I-V curve trace is 10 V/ps!

But fast operational amplifiers can produce only 1-10 V/ns.

Conc lusion: standar d bias switc hing appr oach in quantum sim ulation is
unrealistic, b ut does it matter?

Va(t) Device

Va

time

∆V

∆t

SR = ∆V/∆t
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SLEW RATE

Bias Chang e Current Pulse (1)
Most transient simulations involve switching across the NDR region.

Current pulse after s witc hing was assumed
to be due to quantum well (dis)c harging.
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SLEW RATE

Bias Chang e Current Pulse (2)

Current pulse is usuall y due to accum ulation/depletion c harging.

Instantaneous s witc hing causes more se vere transient response .
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SLEW RATE

Review: Stead y-State R TD I-V Curve

Note oscillation region between V1 and V2, and bistab le operation at V2.
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SLEW RATE

Slewing Thr ough Critical Regions

Obser vation: Some pr ocesses in R TD are (relativel y) ver y slo w.

Conc lusion: Lo w sle w rate is sometime required.

Oscillation max

Oscillation min

0.230 0.235 0.240 0.245 0.250 0.255 0.260
Applied Bias (V)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

C
ur

re
nt

 D
en

si
ty

 (
10

5
 A

/c
m

2
) Steady-State

20 ps/10 mV
50 ps/10 mV

NASA Ames Research Center MRJ Technology Solutions

SLEW RATE

Slewing into Bistab le Regions

Obser vation: De vice function depends on sle w rate .

Conc lusion: Sim ulated sle w rate should mirr or intended application.
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SLEW RATE

Slew Rate In vestigation Conc lusions
Applied bias slew rate does affect quantum device function:

• Huge current pulses due to instantaneous switching

• Slewing too quickly across critical regions

• Slewing into a bistable region

Some pr ocesses in R TDs are une xpectedl y slo w.
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RTD PHYSICS

Open RTD Questions/Contr oversies

• Cause of observed I-V plateau and associated oscillations

• Existence and appearance of intrinsic bistability

• Correct lumped-parameter equivalent circuit model

WFM simulations of Jensen and Buot contradicted the consensus view
on each of these issues.

SQUADS was used to investigate, with surprising results....
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RTD PHYSICS

Review of Jensen and Buot Results
JB RTD Current-V olta ge Cur ve
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RTD PHYSICS

Cause of I-V Plateau and Oscillations
Consensus: observed I-V plateau is average of high-frequency
oscillations, requiring external inductance.

SQUADS (and JB) simulations produced purely intrinsic plateau.

Conc lusion: Sim ulated I-V plateau due to a ne w stead y-state current
path, not oscillations.
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RTD PHYSICS

Cause of Sim ulated Oscillations

Oscillations due to alternating c harge in emitter and QW , and resulting
variation in alignment of discrete states.
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RTD PHYSICS

RTD Equiv alent Cir cuit Model

Simulated I-V cur ve completel y explained b y con ventional cir cuit
model. JB parallel inductance model too unstab le.
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Contradiction: Sim ulation vs Experiment
Simulation results above still disagree with experiment on key points:

• Simulated plateau is steady-state effect.

• Simulated plateau only unstable in small region.

• Simulated steady-state bistability appears in plateau.

But device doesn’t match experiment either:

• Simulated device not charge-neutral: charged contacts.

• Potential depression in emitter not seen in experiment.

JB’s conclusions not supported:

• that they had reproduced experimental observations

• that consensus on some RTD controversies should be revised
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Wide Emitter R TD I-V Cur ve

Simulated plateau m uch smaller . Bistability in main peak no w closer to
experimental results.

0.0 0.1 0.2 0.3 0.4
Applied Bias (V)

0

1

2

3

4

5

6

7

C
ur

re
nt

 D
en

si
ty

 (
10

5
 A

/c
m

2
)

Standar d
RTD

Wide Emitter R TD

U(x)

Va = 0.28V

Wide Emitter

0.
28

NASA Ames Research Center MRJ Technology Solutions

RTD PHYSICS

RTD Physics In vestigation Conc lusions
Most detailed simulation investigation of RTD operation to date:

• Uncovered and corrected errors in previous investigations of
simulation results and experiment.

• Achieved improved agreement between simulation and experiment
for the RTD.
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Quantum Electr onic De vice Sim ulation

Outline

• Motivation

• Approach

• Transfer-Matrix Method

• Wigner Function Method

• Quantum Self-Consistency

• Transient Bias Slewing

• Resonant Tunneling Diode Physics

• Conc lusions
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Contrib utions
• SQUADS: a highly functional, efficient, and extensible simulation

tool for simulation of 1-D quantum devices

• Advancements in Wigner function method:

• Optimal discretization approaches determined

• Complementary roles of steady-state and transient self-
consistency iteration

• Detailed simulation investigation of RTD:

• Applied bias slew rate can dramatically change device function

• Corrected errors in previous interpretation of simulation and
experiment

• Improved agreement between simulation and experiment
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